Context Window Optimization with Binary Search

Introduction
In the world of large language models (LLMs), the Context Window is a finite and extremely valuable resource. To ensure AI always operates at peak performance without overflow errors or losing important details, Prisma AI has implemented Binary Search technique to optimize information allocation.
1. The Challenge of Token Limits
Every AI model has a maximum limit on the number of Tokens (text units) it can process in a single query.
Problems When Sending Too Much
- AI gets "overwhelmed" with data
- Incorrect or inaccurate responses
- System errors due to exceeding limits
Problems When Sending Too Little
- AI lacks necessary context
- Incomplete answers
- Missing important details
┌─────────────────────────────────────────────────────────┐
│ TOKEN LIMIT CHALLENGE │
├─────────────────────────────────────────────────────────┤
│ │
│ Too many tokens Too few tokens │
│ ┌─────────────┐ ┌─────────────┐ │
│ │ ████████████│ │ ██ │ │
│ │ ████████████│ │ │ │
│ │ ████████████│ │ │ │
│ │ ██ OVERFLOW │ │ MISSING │ │
│ └─────────────┘ └─────────────┘ │
│ ❌ System error ❌ Missing context │
│ │
│ "Sweet spot" │
│ ┌─────────────┐ │
│ │ ████████ │ │
│ │ ████████ │ │
│ │ ████████ │ │
│ │ OPTIMAL │ │
│ └─────────────┘ │
│ ✅ Optimal performance │
└─────────────────────────────────────────────────────────┘
2. Optimization Technique Using Binary Search
Prisma AI uses the optimize_documents_for_token_limit function combined with the Binary Search algorithm to find the "sweet spot" of input information.
Processing Workflow
Step 1: Calculate base context
The system first determines the token count of fixed components:
- System Prompt
- Chat History
- Query Templates
Step 2: Measure document cost
Every chunk from the knowledge base is accurately token-counted using token_counter technology.
Step 3: Find optimal length
Instead of randomly cutting documents, the Binary Search algorithm will:
- Continuously halve the document list
- Test each portion
- Precisely determine the maximum number of document chunks
Step 4: Reserve space for response
The system always proactively reserves an output buffer of approximately 2000 tokens to ensure AI has enough space to write complete answers.
Binary Search Algorithm Illustration
┌─────────────────────────────────────────────────────────┐
│ BINARY SEARCH OPTIMIZATION │
├─────────────────────────────────────────────────────────┤
│ │
│ Documents: [D1, D2, D3, D4, D5, D6, D7, D8] │
│ Token Limit: 8000 tokens │
│ │
│ Iteration 1: Try all 8 docs → 12000 tokens ❌ │
│ [████████████████████████] │
│ │
│ Iteration 2: Try 4 docs → 5000 tokens ✅ │
│ [████████████] │
│ │
│ Iteration 3: Try 6 docs → 7500 tokens ✅ │
│ [██████████████████] │
│ │
│ Iteration 4: Try 7 docs → 8500 tokens ❌ │
│ [████████████████████████] │
│ │
│ Result: 6 documents = OPTIMAL ✅ │
│ [██████████████████] │
│ │
└─────────────────────────────────────────────────────────┘
| Step | Documents | Tokens | Result |
|---|---|---|---|
| 1 | 8 | 12,000 | ❌ Exceeds limit |
| 2 | 4 | 5,000 | ✅ Room left |
| 3 | 6 | 7,500 | ✅ Near optimal |
| 4 | 7 | 8,500 | ❌ Exceeds limit |
| Result | 6 | 7,500 | ✅ Optimal |
3. Advanced Content Summarization Optimization
For extremely long documents, Prisma AI applies the optimize_content_for_context_window technique.
How It Works
AI uses binary search to:
- Compress original text content to ideal length
- Preserve core arguments
- Stay within model processing capacity
┌─────────────────────────────────────────────────────────┐
│ CONTENT OPTIMIZATION FLOW │
├─────────────────────────────────────────────────────────┤
│ │
│ Original Document (50,000 tokens) │
│ ┌─────────────────────────────────────────────────┐ │
│ │ ████████████████████████████████████████████████│ │
│ └─────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ Binary Search Optimization │
│ │ │
│ ▼ │
│ Optimized Content (8,000 tokens) │
│ ┌─────────────────┐ │
│ │ ████████████████│ ← Core arguments preserved │
│ └─────────────────┘ │
│ │
└─────────────────────────────────────────────────────────┘
4. Results: Accurate Information, Stable Performance
Thanks to intelligent token management, Prisma AI delivers outstanding benefits:
Eliminate Overflow Errors
Ensures 100% of queries are executed successfully, no more errors from exceeding token limits.
Prioritize Important Information
Documents with highest relevance (after Rerank) are always prioritized for inclusion in the context window first.
Cost Savings
Only send the right amount of data, optimizing API budget for enterprises.
| Benefit | Description |
|---|---|
| 100% Reliability | No more token overflow errors |
| High Quality | Important information prioritized |
| Optimized Cost | Only use necessary tokens |
| Complete Responses | Always buffer for output |
Conclusion
With Prisma AI, your massive data will always be refined and transmitted to AI in the most scientific way. Binary Search technique ensures:
- Every answer is intelligent with full citations
- System operates stably without errors
- Costs are maximally optimized
This is how Prisma AI transforms Context Window limitations into a competitive advantage for your enterprise.
Want to experience Prisma AI's intelligent token optimization capabilities? Contact us for consultation and product demo.
More Articles
Continue reading with these related posts
prisma-aiThe Power of Hybrid Search: Combining Vector and Full-text Search
Discover Hybrid Search technology in Prisma AI - the perfect combination of Vector Search and Full-text Search with RRF algorithm to ensure optimal accuracy when retrieving information.
prisma-aiBring Your Own LLM (BYOLLM) Strategy: The Future of Enterprise AI
Discover Prisma AI's BYOLLM strategy - allowing enterprises to configure and use leading AI models like OpenAI, Anthropic, Google Gemini, Groq and Local LLM according to their specific needs.
generative-aiGenerative AI in SAP: Revolutionizing Enterprise Workflows
Discover how generative AI is transforming SAP environments with intelligent document generation, automated code assistance, and conversational interfaces that boost productivity by 60%.
data-pipelinesReal-Time Data Pipelines: Connecting SAP to Your AI Platform
Learn how to build robust real-time data pipelines that seamlessly connect SAP systems to modern AI/ML platforms, enabling instant insights and automated decision-making.
prisma-aiLangGraph and Multi-Agent Architecture in Prisma AI: The Power of Intelligent Coordination
Discover how Prisma AI uses Multi-Agent architecture with LangGraph to coordinate specialized AI Agents - Planner, Narrator and Designer - to create professional presentations and reports.
sapSAP and AI Integration: Transforming Enterprise Operations in 2026
Explore how the integration of SAP systems with artificial intelligence is revolutionizing enterprise operations, from predictive maintenance to intelligent automation.